Mestrado em Engenharia de Estruturas

Fundações de Estruturas

Notas acerca do comportamento mecânico dos solos

Jaime A. Santos (IST)

Algumas particularidades do comportamento dos geomateriais

<u>Aço e Betão</u> <u>(man-made)</u>		<u>Solos e Rochas</u> <u>(god-made)</u>
Artificial	VS	Natural
Produto Relativamente uniforme	VS	Pode ser extremamente não uniforme
Variabilidade pequena	VS	Variabilidade extremamente elevada
Propriedade estável	VS	Propriedade variável
Relativamente simples	VS	Geralmente muito complicado

Variabilidade das propriedades dos materiais

Propriedade estável versus Propriedade variável

Propriedade variável (nos geomateriais) devido a variações:

- na compacidade; grau de saturação ...
- efeito da tensão de confinamento; história recente das tensões e deformações, consolidação, fluência ...

Comportamento tensão-deformação Comparação entre: aço, solo e água

Materiais	Deformabilidade	Capacidade de memória	Efeito da história das tensões-deformações no comportamento presente
Aço:			
Dom. Elástico	Muito reduzida	Quase nenhuma	Quase nenhum
Pós-cedência	Reduzida	Muito elevada	Muito pequeno
Solo	Reduzida a	Elevada a	Reduzido a Elevado
	muito elevada	Quase nenhuma	Reduzido a quase nenhum
Água	Muito elevada	Quase nenhuma	Quase nenhum

Em certas situações, o solo pode transformar-se num líquido

Estudo na mesa sísmica para analisar a estabilidade de uma conduta num depósito arenoso susceptível à liquefacção

(Universidade de Tokyo – Acção imposta:0,18 g, 10 Hz, 10 s)

Areia não compactada estado solto, $D_r=20\%$

Areia compactada nas zonas adjacentes, D_r=70%

Noutras situações, o solo pode exibir elevadas características mecânicas

Areia sob elevada tensão de confinamento:

$$G_0 = 6900 \frac{(2.17 - e)^2}{1 + e} \sigma_o^{,0.5}$$
 (kPa) Areia Ottawa

Para e = 0.5, $\sigma'_0 = 1000$ kPa tem-se: $G_0 = 406$ MPa $E_0 = 2(1+v)G_0 = 893$ MPa! (v=0.1)

Comportamento não linear dos solos

Jardine (1985; 1992)

Curvas G, ξ em função de γ

Principais factores que afectam o G₀

- Tensão efectiva média (na direcção da propagação da onda e na direcção da vibração da partícula)
- Índice de vazios
- Efeito do tempo (argilas)
- Grau de saturação (argilas e siltes)
- Cimentação

Módulo de distorção inicial: G₀=A F(e) p^{'n}

Estado de pico, estado crítico e estado residual

Importância do G₀

Para prever as deformações do terreno (<u>verificação da</u> <u>funcionalidade das estruturas</u>) é importante caracterizar as propriedades elásticas dos materiais, porque:

- 1) as deformações induzidas no terreno são relativamente pequenas;
- as deformações são portanto essencialmente "elásticas", embora o comportamento tensão-deformação possa ser altamente não linear.

Importância do G₀

Exemplo da importância do G₀:

- Vibração de fundações
- Estimação da resposta sísmica local
- Interacção solo-estrutura
- Avaliação do potencial de liquefacção
- Análise de vibrações (ex. metropolitano, comboios)
- Resposta sísmica do terreno e de estruturas geotécnicas
- Avaliação do resultado do melhoramento de terrenos

Assentamento das fundações da ponte Akashi Strait (Tatsuoka, 2001)

"A geotechnical engineering case history showing the importance of the stress-strain behaviour at very small strains"

Construção: - início: 1986 - sismos de Kobe 1995 (Hyogoken-Nambu) - concluída: 1998

The longest suspension bridge, but the worst ground conditions ever for long suspension bridges in Japan! (Prof. Tatsuoka)

Pilares principais com 283 m apoiados em caixões de betão submersos com 80 m de diâmetro.
Ambos os caixões têm de suportar 120.000 ton.

Evolução do assentamento do Pilar 2P

(sobre depósito de cascalho)

Assentamento:

- durante a const.
- por fluência
- sismo

Projecto: assentamento durante a const. largamente sobrestimado

Evolução do assentamento do Pilar 2P

Assentamento:

 a componente elástica é significativa

Evolução do assentamento do Pilar 3P

PMT - pressiómetro E₅₀ - medidos em ensaios não drenados

Sistema de medição das extensões verticais no cascalho e na rocha branda sedimentar segundo o eixo da fundação

Pier 2P: B=80m, σ =530kPa Pier 3P: B=78m, σ =480kPa

Importância das propriedades elásticas:

Para prever as deformações do terreno associadas às cargas de serviço é importante conhecer as propriedades elásticas porque:

1. as deformações do terreno são relativamente pequenas;

2. a rigidez na gama das pequenas deformações pode relacionar-se com as propriedades elásticas;

3. as propriedades elásticas podem ser medidas através de <u>ensaios de campo</u> e de laboratório.

Como medir o G_0 ?

1. Técnicas que baseiam-se na teoria da propagação das ondas (velocidades)

 $G_0 = \rho V_S^2$; $M_0 = \rho V_P^2$

2. Técnicas que baseiam-se na teoria da elasticidade (tensões-deformações):

 $G_0 = \tau/\gamma$; $E_0 = \sigma/ε$ (γ, ε=ΔL/L≈10⁻⁶)

Variabilidade muito elevada entre os valores obtidos nos diferentes ensaios

Rigidez *in situ* significativamente submestimada implica projecto excessivamente conservativo!

A ligação entre resultados de ensaios de campo e de ensaios em laboratório não estava convenientemente estabelecido.

Erros de medição no triaxial clássico (medição externa)

Erros devidos a:

- Faces não perfeitamente planas
- Faces não perfeitamente paralelas
- Atrito nas faces

SistemaTriaxial utilizado na Universidade de Tokyo.

Medições internas recorrendo a sensores LDT; Local deformation transducer (Goto et al., 1991)

Areia+cimento:

H=60 cm ; D=30 cm

Transdutores LVDT submersíveis

LVDT axial

Ensaios de campo (mais utilizados) para avaliação do módulo de distorção dos solos

Ensaio	Princípio da técnica do ensaio	Nível de distorção
Sísmico entre furos de sondagem "Crosshole seismic testing"		~ 10 ⁻⁶
Sísmico ao longo de furos de sondagem, com fonte à superfície "Downhole seismic testing"	determineção de velocidade de	
Sísmico ao longo de furos de sondagem, com fonte no interior do furo "Uphole"	propagação das ondas de corte	
Piezocone sísmico		
"Refracção e reflexão sísmica"		
Vibração em regime permanente	determinação da velocidade de	~ 10 ⁻⁶
Análise espectral de ondas de superfície	propagação das ondas de superfície	
Ensaio pressiométrico (auto-perfurador)	curva tensão-deformação	> 10 ⁻³

Ondas de volume

Ensaios sísmicos entre furos de sondagem (cross-hole)

Ensaio sísmico ao longo do furo de sondagem (down-hole)

Seismic Cone Penetration Test (SCPT)

The Seismic Cone Penetration Test combines: - the seismic downhole technique with the standard Cone Penetration test (CPT).

- A seismic receiver is added to the cone, then the similar procedure as the one followed with the seismic downhole test is used.

- The shear wave velocity calculation, therefore, is similar to that of the downhole.

The **advantages** of SCPT are:

- its speed, the fact that it provides static soil properties (such as point bearing and sleeve frictional resistance),

- as well as ground proofing and stratigraphy of the site.

Seismic Refraction

